nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2020, 10, No.405 15-23
基于人工智能的课堂教学分析
基金项目(Foundation): 国家自然科学基金项目“基于人工智能的课堂教学交互分析关键技术研究”(项目编号:61977048)阶段性研究成果
邮箱(Email):
DOI:
摘要:

传统课堂教学分析,多以时间取样的手工编码为主,存在过度依赖专家、分析效率低、难以规模化服务等难题。基于人工智能技术的课堂教学分析要突破困境,需经历从全人工、弱人工智能、强人工智能发展到人机协同的进化路径;需建立由多源数据支持的教学案例库、文本视频为主的分析维度集、教学事件与时间取样相结合的多元分析方法而形成的分析框架;在实践层面,以计算机视觉为主的课堂行为分析,以自然语言理解和大数据为主的教学事件分析和评语分析等,可成为基于人工智能技术的课堂教学分析突破口,以期逐步达成人机协同、规模化、高效率开展课堂教学分析的目标。

Abstract:

Traditional classroom teaching analysis based on manual coding has problems such as excessive dependence on experts, low analysis efficiency, and difficulty in large-scale services. In order to break through the predicament of artificial intelligencebased classroom teaching analysis, it is necessary to complete the process from total artificial, artificial narrow intelligence, artificial general intelligence to human-machine collaboration, build databases supported by teaching cases base with multi-source data and analysis dimensions mainly based on text and video, and create an analysis framework formed by a multi-analysis method combining teaching events and time sampling. From the perspective of practice, classroom behavior analysis based on computer vision, teaching event analysis and comment analysis based on natural language understanding and big data will become breakthroughs in classroom teaching analysis based on artificial intelligence, which aims to achieve the goal of human-machine collaborative, large-scale and efficient classroom teaching analysis gradually.

参考文献

[1]宁虹,武金红.建立数量结构与意义理解的联系--弗兰德互动分析技术的改进运用[J].教育研究,2003,(5):23-27.

[2]顾小清,王炜.支持教师专业发展的课堂分析技术新探索[J].中国电化教育,2004,(7):18-22.

[3]方海光,高辰柱等.改进型弗兰德斯互动分析系统及其应用[J].中国电化教育,2012,(10):109-113.

[4]章勤琼,谭莉.课堂录像促进教师专业研修:框架、应用及反思[J].全球教育展望,2019,48(1):103-112.

[5]Stein M K,Correnti R,et al.Using Theory and Measurement to Sharpen Conceptualizations of Mathematics Teaching in the Common Core Era[J].AERA Open,2017,3(1):361-379.

[6]孙众,马玉慧.视频案例多元分析法促进新手教师专业发展研究[J].电化教育研究,2013,34(8):104-109.

[7]郁晓华,黄沁.学习分析视角下的数字化课堂互动优化研究[J].中国电化教育,2018,(2):12-20.

[8]魏宏聚.教学切片分析:课堂诊断的新视角[J].教育科学研究,2019,(2):63-67.

[9]刘海生,李清臣.试析基于教学切片诊断的课堂研究[J].当代教育科学,2015,(20):27-30.

[10]夏雪梅.以学习为中心的课堂观察[M].北京:教育科学出版社,2012.

[11]余胜泉.人工智能教师的未来角色[J].开放教育研究,2018,24(1):16-28.

[12]Easterday M W,Rees Lewis D,et al.Designing Crowd critique Systems for Formative Feedback[J].International Journal of Artificial Intelligence in Education,2017,27(3):623-663.

[13]Beigman Klebanov B,Burstein J,et al.Reflective Writing About the Utility Value of Science as a Tool for Increasing STEM Motivation and Retention-Can AI Help Scale Up?[J].International Journal of Artificial Intelligence in Education,2017,(27):791-818.

[14]Luckin,Rose.Towards artificial intelligence-based assessment systems[J].Nature Human Behaviour,2017,1(28):1-3.

[15]Walkington C,Bernacki M.Personalizing Algebra to Students’Individual Interests in an Intelligent Tutoring System:Moderators of Impact[J].International Journal Artificial Intelligence Education,2019,(29):58-88.

[16]Wu W,Chen L,et al.Inferring Students’Personality from Their Communication Behavior in Web-based Learning Systems[J].I nternational Journal of Artificial Intelligence in Education,2019,(29):189-216.

[17]Taub M,Azevedo R.How Does Prior Knowledge Influence Eye Fixations and Sequences of Cognitive and Metacognitive SRLProcesses during Learning with an Intelligent Tutoring System?[J].International Journal Artificial Intelligence Education,2019,(19):1-28.

[18]刘智,刘三等.物理空间中的智能学伴系统:感知数据驱动的学习分析技术--访柏林洪堡大学教育技术专家Niels Pinkwart教授[J].中国电化教育,2018,(7):67-72.

[19]刘三,周东波等.基于地图的教育大数据可视分析方法探讨[J].电化教育研究,2018,39(7):49-56.

[20]程云,刘清堂等.基于视频的改进型S-T分析法的应用研究[J].电化教育研究,2016,(6):90-96.

[21]刘凯,胡祥恩等.机器也需教育?论通用人工智能与教育学的革新[J].开放教育研究,2018,24(1):10-15.

[22]吕恺悦,施智平等.人工智能时代下的教师教育发展“2019人工智能+教师教育国际研讨会”在北京举行[J].现代教育技术,2019,(7):1.

[23]张学军,董晓辉.人机共生:人工智能时代及其教育的发展趋势[J].电化教育研究,2020,41(4):35-41.

[24]Walker R,Adelman C.Interaction analysis in informal classrooms:Acritical comment on the Flanders’system[J].British Journal of Educational Psychology,2011,45(1):73-76.

[25]Amidon E J,Casper I G,et al.The role of the teacher in the classroom:Amanual for understanding and improving teacher classroom behavior[M].MN:Paul S.&Associates,Inc,1985.

[26]郑隆威,冯园园等.学习成果可测了吗:基于学习分析方法的认知分类有效性研究[J].电化教育研究,2019,40(1):77-86.

[27]李善良.课堂教学目标的确定--基于美国中小学教材的考察[J].教育理论与实践,2011,31(25):53-56.

[28]冯茹,马云鹏.基于真正学习的教学设计三维要素分析[J].教育理论与实践,2019,39(10):58-62.

[29]徐梦杰,曹培英.精准针对学生差异的学情分析研究[J].课程·教材·教法,2016,36(6):62-67.

[30]陈佑清,陶涛.“以学评教”的课堂教学评价指标设计[J].课程·教材·教法,2016,36(1):45-52.

[31]Davis E A,Beyer C,et al.Understanding pedagogical design capacity through teachers’narratives[J].Teaching and Teacher Education,2011,27(4):797-810.

[32]黄宝权.基于课堂教学切片诊断的课堂观察[J].教育科学研究,2017,(9):46-49.

[33]郝琦蕾,郭彩利等.中学教师教学反思现状的质性研究[J].教学与管理,2017,(3):21-24.

[34][48]马志强,王靖等.网络同伴互评中反馈评语的类型与效果分析[J].电化教育研究,2016,37(1):66-71.

[35]Karpathy A,Toderici G,et al.Large-Scale Video Classification with Convolutional Neural Networks[A].Proceedings of the 2014IEEE Conference on Computer Vision and Pattern Recognition[C].Columbus:IEEE,2014.

[36]Dai W,Chen Y,et al.Two-Stream Convolution Neural Network with Video-stream for Action Recognition[A].Proceedings of the 2019International Joint Conference on Neural Networks(IJCNN)[C].Budapest:IEEE,2019.

[37]Tran D,Bourdev L,et al.Learning Spatiotemporal Features with 3DConvolutional Networks[A].Proceedings of the 2015 IEEE International Conference on Computer Vision(ICCV)[C].Santiago:IEEE,2015.

[38]周鹏霄,邓伟等.课堂教学视频中的S-T行为智能识别研究[J].现代教育技术,2018,28(6):54-59.

[39]徐家臻,邓伟等.基于人体骨架信息提取的学生课堂行为自动识别[J].现代教育技术,2020,30(5):108-113.

[40]Gagne,R.The Conditions of Learning(4th.)[M].New York:Holt,Rinehart&Winston,1985.

[41]R.M.加涅.皮连生,王映学等译.学习的条件和教学论[M].上海:华东师范大学出版社,1999.

[42]何克抗.教学结构理论与教学深化改革(上)[J].电化教育研究,2007,(7):5-10.

[43]Jacobson M J,Kim B,et al.To guide or not to guide:Issues in the sequencing of pedagogical structure in computational model-based learning[J].Interactive Learning Environment,2013,23(6):715-730.

[44]王冬青,刘欢等.智慧课堂教师行为数据的分析方法与应用验证[J].中国电化教育,2020,(5):120-127.

[45]Inês Bruno,Leonor Santos.Written comments as a form of feedback[J].Studies in Educational Evaluation,2010,36(3):111-120.

[46]C.S.Akpe.Using Respondents’Free Comments To Improve College Curricula:A Case Study of Rivers State College of Education NCE Primary Programme[J].Studies in Educational Evaluation,1989,(15):183-191.

[47]Alhija N A,Fresko B.Student evaluation of instruction:What can be learned from students’written comments?[J].Studies in Educational Evaluation,2009,35(1):37-44.

[49]刘智.课程评论的情感倾向识别与话题挖掘技术研究[D].武汉:华中师范大学,2014.

[50]岳欣云,董宏建.教师教学诊断能力:内涵、价值及提升策略[J].教育理论与实践,2015,35(26):3-5.

[51]刘清堂,何皓怡等.基于人工智能的课堂教学行为分析方法及其应用[J].中国电化教育,2019,(9):13-21.

[52]江毅,王炜等.基于行为序列分析的师生互动效果研究[J].现代远距离教育,2019,(6):53-61.

[53]罗祖兵,郭超华.新中国成立70年课堂教学评价标准的回顾与展望[J].中国教育学刊,2020,(1):55-61.

[54]陈振华.教学评价中存在的问题及反思[J].教育发展研究,2009,(18):84-87.

基本信息:

DOI:

中图分类号:G434

引用信息:

[1]孙众,吕恺悦,骆力明等.基于人工智能的课堂教学分析[J].中国电化教育,2020,No.405(10):15-23.

基金信息:

国家自然科学基金项目“基于人工智能的课堂教学交互分析关键技术研究”(项目编号:61977048)阶段性研究成果

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文