nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 07, No.450 99-108
基于大模型的教学智能体构建与应用研究
基金项目(Foundation): 北京市教育科学“十四五”规划2021年度重点课题“人工智能驱动的新一代智能导学系统构建研究”(课题编号:CHAA21036)研究成果
邮箱(Email):
DOI:
摘要:

随着生成式人工智能的快速发展,基于大模型的智能体已经逐步具备了多模态感知、检索增强生成、推理与规划、交互与进化等能力。该研究提出基于大模型的教学智能体的基本概念与框架,以“大模型”为技术核心,重点构建“教育任务设定”“教育任务规划”“教育能力实现与拓展”“教育内容记忆与反思”“交互协作与动态进化”多个功能模块,支持与多类型对象交互并实现动态进化,涵盖人机交互、多智能体交互以及环境交互。基于所提出的框架,研究以项目式学习任务为应用场景,阐述了教学智能体作为“助教智能体”和“同伴智能体”,在个性化驱动问题提出、项目方案共同设计、项目作品协作完成、项目作品多角色评价多个环节的作用及相关支撑技术。最后,研究进一步探讨了教学智能体的发展方向与未来展望。

Abstract:

With the rapid development of generative artificial intelligence, agent with foundation model has gradually acquired the capabilities of multimodal perception, retrieval and augmentation generation, reasoning and planning, interaction, and evolution. In this study, we propose the basic concept and framework of pedagogical agent with foundational model, with foundation model as the core, focusing on the construction of “educational task setting”, “educational task planning”, “educational capability realization and expansion”, “educational content memory and reflection”, “interactive collaboration and dynamic evolution”. It also supports interaction with multiple types of objects and dynamic evolution, covering human-computer interaction, multi-agent interaction, and environment interaction. Based on the proposed framework, this study takes the project-based learning task as an application scenario, and describes how the proposed pedagogical agent can be used as “assistant agent” and “peer agent” in personalization-driven problem posing, co-design of the project plan, collaborative completion of the project work, and multi-role evaluation of the project work. Finally, this study further discusses the future development and outlook of pedagogical agent.

参考文献

[1]Franklin S,Graesser A.Is it an Agent,or just a Program?:A Taxonomy for Autonomous Agents[A].International Workshop on Agent Theories,Architectures,and Languages[C].Berlin,Heidelberg:Springer Berlin Heidelberg,1996.21-35.

[2]Xi Z Chen W,Guo X,et al.The Rise and Potential of Large Language Model Based Agents:A Survey[DB/OL].https://arxiv.org/abs/2309.07864,2023-09-19.

[3]Soller A,Busetta P.An Intelligent Agent Architecture for Facilitating Knowledge Sharing Communication[A].Rosenschein S J,Wooldridge M.Proceedings of the Workshop on Humans and Multi-Agent Systems at the 2nd International Joint Conference on Autonomous Agents and Multi-Agent System[C].New York:Association for Computing Machinery,2003.94-100.

[4]Woolf B P.Building Intelligent Interactive Tutors:Student-centered Strategies for Revolutionizing e-Learning[M].Burlington:Morgan Kaufmann,2010.

[5]刘清堂,巴深等.教育智能体对认知学习的作用机制研究述评[J].远程教育杂志,2019,37(5):35-44.

[6]刘清堂,巴深等.视频课程中教育智能体的社会线索设计研究[J].电化教育研究,2020,41(9):55-60.

[7]刘三女牙,彭晛等.数据新要素视域下的智能教育:模型、路径和挑战[J].电化教育研究,2021,42(9):5-11+19.

[8]Swan,M.,Kido,T.,Roland,E.,Santos,R.P.D.Math Agents:Computational Infrastructure,Mathematical Embedding,and Genomics[DB/OL].https://arxiv.org/abs/2307.02502,2023-07-04.

[9]Jinxin S,Jiabao Z,et al.CGMI:Configurable General Multi-agent Interaction Framework[DB/OL].https://arxiv.org/abs/2308.12503,2023-08-28.

[10]Durante Z,Huang Q,et al.Agent AI:Surveying the Horizons of Multimodal Interaction[DB/OL].https://arxiv.org/abs/2401.03568,2024-01-25.

[11]Marino K,Rastegari M,et al.Ok-vqa:A Visual Question Answering Benchmark Requiring External Knowledge[A].Robert S.and Florian K..Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Piscataway:IEEE Computer Society,2019.3195-3204.

[12]Gao Y,Xiong Y,et al.Retrieval-augmented Generation for Large Language Models:A Survey[DB/OL].https://arxiv.org/abs/2312.10997,2024-01-05.

[13]Li H,Su Y,et al.A Survey on Retrieval-augmented Text Generation[DB/OL].https://arxiv.org/abs/2202.01110,2022-02-13.

[14]Boiko D A,Mac Knight R,Gomes G.Emergent Autonomous Scientific Research Capabilities of Large Language Models[DB/OL].https://arxiv.org/abs/2304.05332,2023-04-11.

[15]Wei J,Wang X,et al.Chain-of-thought Prompting Elicits Reasoning in Large Language Models[J].Advances in Neural Information Processing Systems,2022,35:24824-24837.

[16]Wang X,Wei J,et al.Self-consistency Improves Chain of Thought Reasoning in Language Models[DB/OL].https://arxiv.org/abs/2203.11171,2023-03-07.

[17]Yao S,Yu D,et al.Tree of Thoughts:Deliberate Problem Solving with Large Language Models[J].Advances in Neural Information Processing Systems,2024,36:1-11.

[18]Yao S,Zhao J,et al.Re Act:Synergizing Reasoning and Acting in Language Models[DB/OL].https://arxiv.org/abs/2210.03629,2023-03-10.

[19]Wang G,Xie Y,et al.Voyager:An Open-Ended Embodied Agent with Large Language Models[A].Colas C,Teodorescu L,Ady N,Sancaktar C,Chu J.Intrinsically-Motivated and Open-Ended Learning Workshop@Neur IPS2023[C].Cambridge,MA:MITPress,2023.

[20]Wu Q,Bansal G,et al.Autogen:Enabling Next-gen LLM Applications via Multi-agent Conversation Framework[DB/OL].https://arxiv.org/abs/2308.08155,2023-10-03.

[21]Bran A M,Cox S,et al.Chem Crow:Augmenting Large-language Models with Chemistry Tools[DB/OL].https://arxiv.org/abs/2304.05376,2023-10-02.

[22]Gao D,Ji L,et al.Assist GPT:A General Multi-modal Assistant that Can Plan,Execute,Inspect,and Learn[DB/OL].https://arxiv.org/abs/2306.08640,2023-06-28.

[23]Liang T,He Z,et al.Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate[DB/OL].https://arxiv.org/abs/2305.19118,2023-05-30.

[24]Hong S,Zheng X,et al.Metagpt:Meta Programming for Multi-agent Collaborative Framework[DB/OL].https://arxiv.org/abs/2308.00352,2023-11-06.

[25]Park J S,O’Brien J,et al.Generative Agents:Interactive Simulacra of Human Behavior[A].Follmer S,Han J,Steimle J,Riche NH.Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology[C].New York:Association for Computing Machinery,2023.1-22.

[26]Wang L,Ma C,et al.A Survey on Large Language Model Based Autonomous Agents[J].Frontiers of Computer Science,2024,18(6):1-26.

[27]Lang Chain.Lang Chain[EB/OL].https://python.langchain.com/docs/get_started/introduction,2023-11-12.

[28]Auto-GPT.Auto-GPT[EB/OL].https://docs.agpt.co/,2023-12-29.

[29]Auto Gen.Auto Gen[EB/OL].https://microsoft.github.io/autogen/,2023-12-28.

[30]Baby AGI.Baby AGI[DB/OL].https://github.com/yoheinakajima/babyagi,2023-12-28.

[31]Li G,Hammoud H,et al.Camel:Communicative Agents for“mind”Exploration of Large Language Model Society[J].Advances in Neural Information Processing Systems,2024,36:1-34.

[32]卢宇,余京蕾等.多模态大模型的教育应用研究与展望[J].电化教育研究,2023,44(6):38-44.

[33]Wolfram.Wolfram Alpha[EB/OL].https://www.wolframalpha.com/,2023-11-11.

[34]马宁,郭佳惠等.大数据背景下证据导向的项目式学习模式与系统[J].中国电化教育,2022,(2):75-82.

[35]Zhang Z,Han X,et al.ERNIE:Enhanced Language Representation with Informative Entities[A].Korhonen A,Traum D,Màrquez L.Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics[C].Stroudsburg:Association for Computational Linguistics,2019.1441-1451.

基本信息:

DOI:

中图分类号:G434;TP18

引用信息:

[1]卢宇,余京蕾,陈鹏鹤.基于大模型的教学智能体构建与应用研究[J].中国电化教育,2024,No.450(07):99-108.

基金信息:

北京市教育科学“十四五”规划2021年度重点课题“人工智能驱动的新一代智能导学系统构建研究”(课题编号:CHAA21036)研究成果

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文